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The conventional long-wave equations for waves propagating over fluid of variable 
depth depend for their formal derivation on a Taylor series expansion of the velocity 
potential about the bottom. The expansion, however, is not possible if the depth is 
not an analytic function of the horizontal co-ordinates and it is a necessary condition 
for its rapid convergence that the depth is also slowly varying. We show that if in the 
case of two-dimensional motions the undisturbed fluid is first mapped conformally 
onto a uniform strip, before the Taylor expansion is made, the analytic condition is 
removed and the approximations implied in the lowest-order equations are much 
improved. 

In the limit of infinitesimal waves of very long period, consideration of the form 
of the error suggests that by modifying the coefficients of the reformulated equation 
we may find an equation exact for arbitrary depth profiles. We are thus able to cal- 
culate the reflexion coefficients for long-period waves incident on a step change in 
depth and a half-depbh barrier. The forms of the coefficients of the exact equation are 
not simple; however, for these particular cases, comparison with the coefficients of 
the reformulated long-wave equation suggests that in most cases the latter may be 
adequate. This opens up the possibility of beginning to study finite amplitude and 
frequency effects on regions of rapidly varying depth. 

1. Introduction 
It has long been known that the equations governing the propagation of surface 

gravity waves can be greatly simplified if the horizontal length scale A* (say) of 
variations in the wave amplitude satisfies 

A* & h,, ( 1 . 1 )  

where h, is a typical depth. I n  particular Mei & Le Mehaute (1966) have derived to 
arbitrary order in h,/h* the equations governing the propagation in two dimensions 
of long waves incident on variable depth. 

The presence of bottom topography, however, introduces special problems for the 
long-wave equations since the interaction of the flow under the wave with the depth 
must imply that 

A* ,< a*, (1.2) 
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where a* is the length scale of variation in the depth. Thus from (1 .1)  and (1.2) the 
long-wave equations are valid only for topographies satisfying 

Inherent in this restriction but also appearing explicitly in the formulation of Mei & 
Le Mehaute is the condition t,hat all the derivatives of the depth h (say) must exist 
everywhere. Thus h must be an analytic function of the horizontal co-ordinates. 
There are formulations, for example Peregrine (1967), which do not include this con- 
dition explicitly; however, this is because the equations have not been derived to 
arbitrary order. Thus the bounds which must be placed on the higher derivatives of 
h in order for the (absent) neglected terms to be small have not been obtained. Indeed 
it might be argued that (1 .1)  and (1.3) provide a fundamental objection to any long- 
wave type of approach when the depth is rapidly varying and we must consider the 
problem for a general wavelength. This, however, has proved tractable only for 
infinitesimal waves (when the problem is linear) and although some solutions for 
particular topographies are available (Roseau 1952; Bartholomeusz 1968)) together 
with some accurate approximations to global properties, such as reflexion coefficients 
(e.g. Miles 1967; Mei & Black 1969), the only theory available for reasonably general 
topographies seems to be that of Kreisel (1949). The restrictions of Kreisel’s theory 
are that the flow be two-dimensional and the depths at  either infinity satisfy 

a* 9 h,. (1.3) 

h( -CO) = h( +LO). (1.4) 
The method, which also requires knowledge of the conformal mapping which takes the 
fluid domain to a uniform strip, results in an integral equation which must be solved 
iteratively. 

We consider that, because of the restriction (1.4)) the greater facility with which 
differential equations may be handled and the ability of the long-wave equations to 
handle nonlinear effects, a formulation of the long-wave equations which avoids the 
analytic restriction and has improved accuracy for rapidly varying depth might be 
useful in future long-wave investigations. 

In the next section we show how for two-dimensional motions and using the con- 
formal-mapping idea of Kreisel we may derive such an equation. However, the 
consequence of (1.1) and (1.2) is that specific expressions for the error can only be 
obtained for infinitesimal waves when the frequency 6, say, can be used as a small 
parameter instead of h,/h*. We shall therefore, for simplicity, consider only infini- 
tesimal waves although nonlinear forms of the equations can be found in appendix A. 
This ability to include nonlinear effects is of course an important point in favour of 
this theory as against Kreisel’s. 

2. Long-wave equations for rapidly varying depth 
Derivation of the conventional equations 

The equations and boundary conditions governing the propagation of infinitesimal 
surface gravity waves on fluid of variable depth h(x)  take the form (Lamb 1932, 
p. 363). & = -& on y = 0, (2.1) 

q5zz+&, = 0 in - h ( z )  < y < 0, (2 .2)  

&h,+$, = 0 on y = -h(x) ,  (2.3) 
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FIGURE 1. Configuration. 

where #(x, y, t )  is the velocity potential of the irrotational flow field, g is the accelera- 
tion due to gravity and the configuration is as shown in figure 1. Here and throughout 
the paper, subscripts generally denote differentiation, x and y are the horizontal and 
vertical co-ordinates respectively, and t is the time. The free surface 

Y = r ( x , t )  (2.4) 

# t + g y = O  on y = O .  (2.5) 

may be obtained from the value of the velocity potential on y = 0 through the equation 

The fundamental step in obtaining the conventional long-wave equations from 
(2.1)-(2.3) is the approximation of #(x, y, t )  by truncations of a Taylor series expansion 

about the bottom y+h(x) = 0 (Mei & Le Mehaute 1966). Substitution of (2.6) into 
the bottom boundary condition (2.3) gives 

(2.7) 

whilst substitution into the continuity equation (2.2) and equating powers of y + h ( x )  
yields the recurrence relation 

(2.8) 

Thus provided that #(O)(z,t) and h(z)  are analytic functions of x, (2.7) and (2.8) allow 
the #(rn)(wz = 1 , 2 , 3  ...) to be expressed explicitly in terms of $(O)(z,t) =f(x,t), say, 
h(x)  and their derivatives. Substitution of the Taylor expansion (2.6) into the free- 
surface boundary condition (2.1) then yields a single infinite-order differential equa- 
tion forf(z, t )  which may be truncated under the assumptions ( 1 . 1 )  and (1.3).  

For example, the simplest non-trivial truncation of (2.6) takes the form 

#(I) = - h,#&O)/( 1 + hi) 

$(rn+z) = - {#g;) + 2h, #p+l) + h,, #(rn+l)}/( 1 + h;). 

(2.9) 
(Y + hI2 #@, Y ,  4 = f ( x ,  t) - (Y + h )  h,f, - ~ f , ,  + O{(h0/a*)47 (h0/n*)4)j 

where by O{(h, /~x*)~,  (ho/h*)4} we mean a quantity wliose order of magnitude relative 
to the dominant term (heref(x, t ) )  is the  larger of (h,,/~4*)~ and (h0/A*)4. Note that this 
splitting of the length scales is artificial for rapidly varying depth. however for slowly 
varying depth this notation allows us to keep better track of the error. 

Substitution of (2.9) into the free-surface boundary condition (2.1) gives the well- 
known equation (e.g. Lamb 1932, p. 273) 

for f (x, t ) ,  the value of the velocity potential on the bottom. 
ftt - a[ghf,lP. = O{(ho/a*)2, (h0/A*)2) (2.10) 
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FIGURE 2. Configuration in (6, 5)  co-ordinates. 

We thus have the not unexpected result that, if the depth h(x)  varies on a length 
scale a* shorter than the depth, the error will always dominate the terms retained in 
the conventional long-wave equation. This is so to whatever order (2.6) and (2.10) are 
taken; indeed the error term in (2.10) is optimistic rather than the reverse since in 
deriving it we have ignored, for example, (h0/a*)4 compared with (ho/a*)2. Thus the 
Taylor series (2.6) for $(x, y, t )  diverges and a new approach is necessary. 

Equations in conformal co-ordinates 

We show that by first mapping the (undisturbed) fluid domain onto a uniform strip 
after the manner of Kreisel (19.19) we may improve considerably on the conventional 
Taylor expansion (2.6) and the resulting equation (2.10). Thus we postulate a con- 

which takes the fluid domain 
formal mapping g + i c  = w(x+iy)  (2.11) 

9: -h(z)  < y < 0, -a3 < x < a3 
to the uniform strip 

D: - 1 < [ < O ,  - a 3 < c ; < a 3  

(2.12) 

(2.13) 

(see figure 2).  The governing equations (2.1)-(2.3) transform in the (C, 6) co-ordinates 
to (Kreisel 1949) 

H(t)$ t t  = -s$g on 5 = 0, (2.14) 

$c6i-$cc = 0 in - 1  < [ <  0, (2.15) 

where 
(2.16) 

(2.17) 

Note that the influence of the bottom topography has been reduced to there being 
a smooth (analytic) coefficient H ( ( )  in the free-surface boundary conditions. The 
'depth' is now constant and we may expand $(g, 6, t )  in a Taylor series about the 
bottom without the problems encountered in the conventional formulation: 

For (2.18) to sat8ircsv the bottom boundary condition (2.16) and the field equation 
(2.15) we must have 

Thus we may write (2.18) explicitly in the form 

$(l)(,g, t )  = 0, $ g + 2 )  = - $('q (2.19), (2.20) 65 

(2.21) 
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Before going on to write down the various forms of the long-wave equations associated 
with (2.21) it is as well to consider first the properties of (2.21) as these are significant 
for the ‘finite’ amplitude waves as well as for the infinitesimal waves considered here. 

Properties of the Taylor expansion 

First of all, the radius of convergence of any Taylor expansion of a function is simply 
the distance to the closest singularity of its associated analytic extension in the com- 
plex plane (Phillips 1957). Since $ is a solution of Laplace’s equation, in this case the 
radius of convergence is simply the distance to the closest singularity of $ or it5 
analytic extension beyond the boundaries of D or 9. If the bottom topography 
possesses corners, these will give singularities in $z and $u actually on y = h ( z )  and 
thus we are unable to put a lower limit on the radius of convergence of (2.6). I n  con- 
trast (2.21) is symmetrical about c+ 1 = 0 and thus the closest singularity must be 
either on or outside the free surface b = 0 or its image in the bottom 5 = - 2. Assuming 
that there are no singularities in the surface elevation 1;1 and hence in $(c, 0 ,  t) we have 
the important result that for infinitesimal waves (2.21) is convergent in 

I g + q  < 1 .  (2.22) 

For finite amplitude waves, of course, this result must be relaxed somewhat. 
The second important advantage of (2.21) as compared with (2.6) is the improve- 

ment which results in the lowest-order approximations; this suggests that, as well as 
converging eventually if sufficient terms are taken, (2.21) will also be significantly 
more accurate than (2.6) for only a few terms. 

The velocities implied by the first terms of (2.6) and (2.21) are respectively 

and 
(2.23) 

(2.24) 

where V is the two-dimensional gradient operator ia/ax+ jalay. Thus, while (2.23) 
embodies Lamb’s original assumption that the pressure be sensibly hydrostatic and 
therefore that the flow be parallel to the mean free surface, (2.24) can be interpreted 
as saying that the velocity field is everywhere parallel to the steady solution of the 
equations, a much more plausible assumption. Thus th.s bottom boundary condition 
is satisfied exactly to whatever order (2.21) is truncated, whilst this is never the case 
for the conventional expansion (2.6). 

The reformulated equations 

Substitution of (2.21) into the free-surface boundary condition (2.14) and neglecting 
ft5 compared with f, etc., gives for first-order balance the equation 

(2.25) 

where h and a are the (non-dimensional) scales of variation off (6 ,  t )  and H ( [ )  respec- 
tively with the transformed co-ordinate E. Again, for consistency in (2.25) 

h 6 a. (2.26) 
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However H ( 5 )  is an analytic function and in fact we may show (Hamilton 1974; or 
see appendix B) that 

h(x([* - 1)) d[* 
- cosh2 +n(E* - E) ’  (2.27) 

Thus a = O( I )  at the worst and for even the most extreme topographies the neglected 
terms in (2.25) will never dominate the terms retained, although they may be of the 
same order of magnitude. 

For better comparison of (2.25) with the conventional equation (2.10) we make the 
transformation 

x = 45, 01, 6 = a x ,  0). (2.28) 

Thus, noting that the Cauchy-Riemann relations and the definition of H ( 6 )  give 

we obtain 
(2.29) 

(2.30) 

Thus the actual depth h(x) in (2.10) has been replaced by the analytic function 

H(5(x ,  011, (2.31) 

which we may call the ‘equivalent depth’. 
Figures 4 and 5 show comparisons of h(x) and the equivalent depth for a step 

change in depth and a half-depth barrier. It can be seen that, as indicated by (2.27), 
the equivalent depth can be regarded as a smoothed version of the actual depth h(x). 

Now although we have demonstrated that (2.30) is based on more plausible physical 
assumptions than is the equivalent conventional equation (2.10) and that it is also 
based on a Taylor expansion for the velocity potential which is convergent for abrupt 
topography (as opposed to (2.10), which is not), it would still be instructive to obtain 
a more specific expression for the actual error of (2.30) when a = O( 1) than is provided 
merely by the sum of the remainder terms of the Taylor expansion. This proves 
possible for the small amplitude waves considered since we may assume that the 
motions are simple harmonic with a frequency o, say, satisfying 

S2 = d h 0 / g  < 1,  (2.32) 

where 6 is the non-dimensional frequency. Under this assumption (2.25) takes the 
form 

fg + (PH/ho)f = O{S2, a-’}. (2.33) 

Note that (2.33) should not be taken to mean that the length scale h off([, t )  is 

(2.34) 

f&( * O ( W  (2.35) 

O(6-l). In  fact 

For example, 

since from (2.33) 

A = min (P1, a). 

f 5 5 g  = ( -J2/h0) (W((f+ 2H&+Hf&) 

= ( - a2/hO) (H( ( f+  2H.fg) + O ( W )  
= O(PZa-2f). (2.36) 
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Note that we have expressed ft6[( to O(62f) as a linear combination off and ft and in 
fact we may do this for all the higher derivatives off provided th.at f satisfies (2.33). 
I n  general 

(2.37) 

Hence we may obtain a modified expression for the error in the free-surface boundary 
condition when f (6, t )  is a solution of the truncated equation (2.32): 

c 

(2.38) 

We may interpret the coefficients in the above expression in terms of the stream 

(-?At, - l ) - f f ( E ) )  (2.39) 

is the difference between the depth a t  the bottom of the line 5 =constant and the 
value of the equivalent depth function a t  the top. Similarly 

and potential functions of the steady flow, namely [(x, y) and t (x ,  y). For example 

4 t - 9  - x(<,<)d<) (2.40) 

is the difference between the horizontal location of the bottom of the line t = constant 
and its ‘mean’ location. The amount by which solutions of (2.25) fail to satisfy the 
free-surface bcundary condition is thus to  O{S2) a linear combination of the coefficients 
(2.39) and (2.40), which are functions only of the topography and the values off and f6. 

More important than the particular forms of (2.39) and (2.40) are, first, the ability 
to simplify the form of the error in the manner indicated by (2.38),  and second, the 
presence of the term in f6 in (2.38). These suggest that we might be able to choose the 
two coefficients a ( ( )  and b(c) ,  say, of an  equation of the form 

f& + S2[a(C)f + b(t)f[l = O{W (2.41) 

such that the two coefficients of the error term equivalent to  (2.39) and (2.40) can be 
made to vanish identically. The amount by which solutions of (2.41) fail to  satisfy 
the free-surface boundary condition will then be O ( P )  relative to $c or ( P H / h 0 )  + on 
< = 0. Such an equation would correctly describe the dynamics of long-period waves 
incident on arbitrarily rapidly varying topography. We note that the introduction of 
the term PbfS makes this equation qualitatively different from the simplest form of 
the reformulated long-wave equations (2.25). However, if we make the assumption 
a-l = O(S4) and truncate (2.21) in (2.14) accordingly, thus treating the case of the 
bottom varying more rapidly than the intrinsic length scale of the long waves, we 
obtain to the lowest order 

(S2ffIho) (f - +fg) +ftg - ifgg = 0V4? a-”. (2.42) 

- 1  
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Also, since from a first-order balance 

fg = ( - PH/hO) f + O{P,  

we have on using this to simplify the higher-order terms in (2.42) the equation 

(2.43) 

S2Hf 1 6 2  1 62 
h0 6 h0 3h0 
- + ftt + - - Htt f + - - Ht f6 = O{P,  a-4]. (2.44) 

Thus, approximately, 
a(5) = H + i~~~ + o(a-41, (2.45) 

b(5 )  = QHt+ O{a-2}. (2.46) 

It will be seen that the variable f (<, t )  is the most natural variable to use for an exact 
very-long-period equation; it is not in general the most easily observed. Therefore in 
the next section we derive an equation for the wave amplitude ~ ( 5 ,  t )  of the form 

7" + S2[A(5)7 + B(5)751 = 0. (2.47) 

The approximate version of this equation equivalent to (2.44) can be found from 
(2 .5 ) ,  which to order a-4 takes the form 

7 = ( - i&/d [f - &I + O{a-41. (2.48) 

Substitution of (2.48) into (2.44) yields 

765 + (Who) [ ( H  - 9H&) 7 - WpISl = O{rE (2.49) 

and the approximations 
A ( [ )  = H - +H" + o(a-41, 

B(<) = - $Ht + O{a-2). 

(2.50) 

(2.51) 

3. An exact equation for long-period waves 
The Taylor expansion (2.21) for the velocity potential q5 about the bottom is 

absolutely convergent in - 1 < 5 < 0 and thus on substitution into the free-surface 
boundary condition (2.14) we obtain the following infinite-order differential equation 
forf (6, t )  = $a, - 1 , t ) :  

If we assume that f (5, t )  also satisfies (2.41), which we write in the form 

fg = ( - Who)  {af + bfc} + 0{a2), 

where a( ( )  and b ( ( )  are to  be determined, then we may write 

We find that on substitution for the higher derivatives off in (3.1) using (3.3) and 
equating terms in f (<, t )  and ft(& t )  to zero we obtain two infinite-order ordinary 
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FIGURE 3. Reflexion of a long-period wave by an abrupt change in depth. 

differential equations for a(&) and b(5) as functions of H(5) .  These may be inverted 
and we quote the results (Hamilton 1974; or see appendix B for the method): 

Unfortunately we are primarily interested not in f (5, t )  but rather in the wave ampli- 
tude y(5, t )  and although from (2.5),  (2.21) and (3.2) we may obtain 

r(5, t )  = ( - i&/g) f+ o(82} (3.6) 

y ( 5 , t )  is not itself a solution of (3.2). Given (3.6), however, do we need to derive an 
equation of the form (2.47) for y ?  The answer is yes, since (2.47) is the simplest 
equation which correctly predicts the dynamical behaviour of long-period waves over 
extensive areas of rapidly varying topography. 

Indeed for areas whose extent is very much less than S-%, we may employ the 
trivial equation 

to integrate f (6,  t )  across the area of rapidly varying depth, then use the result to splice 
together two solutions for constant depth. Thus consider figure 3. From (3.7), at the 
transition (5 = 0 say) both ft and f are continuous, hence 

f& = O(&W (3.7) 

and 

Thus 

which reproduces the reflexion coefficients of Lamb (1932, p. 262) and Bartholomeusz 
(1958) in the limit &+ 0. Note that fE = constant implies constant mass flux and that 
the phase lag in the 6 co-ordinate is O(a8lR). 

Equation (3.7), however, is not sufficient for extensive areas of rapidly varying 
depth (a = 1)  and thus all the terms on the right-hand side of (3.2), being of the same 
magnitude, are important for expressing the dynamical balance correctly. As a direct 
corollary, components of f(5, t )  which are rapidly varying (length scales O( 1 ) )  and 
therefore from (3.2) have amplitudes 0(a2) relative to the components off (5, t )  which 
are slowly varying (length scales O(8-l)) are important in the dynamical balance and 
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should be calculated. Thus the 0 ( 6 2 )  terms in (3.6)' which are neglected if we calculate 
~ ( 5 ,  t )  through (3.2) and (3.6)) contain rapidly varying components and this method 
of determining q is inadequate. 

We may derive expressions for the coefficient A(C) and B(€J in an equation of the 

form T,, + S2(AT +By,) = O{S2I (3.11) 

for q(k, t )  by determining the 0{62} terms in (3.6) and substituting for 7 into (3.2). 
However, the expressions obtained are inconvenient for practical evaluation and we 
prefer to  derive them by expanding the velocity potential about the mean free surface. 

Thus the appropriate solution of Laplace's equation (2.15) and the free-surface 
boundary condition (2.14) takes the form 

where F ( [ ,  t )  = q5( [ ,  0,  t )  and the wave amplitude 7, from (2.5), is simply proportional 

7 = ( -  iw/g) P. (3.13) to P: 

However, in contrast to expansion of the velocity potential about the free surface 
(2.21) we have no absolute assurance that (3.12) is convergent in - 1 6 5 6 0 and 
the resulting equation (3.11) must be justified through (2.5)) (2.21) and (3.2). Thus 
assuming the convergence of (3.12)' we may substitute into the bottom boundary 
condition, and using (3.13) obtain the following infinite-order ordinary differential 
equation for 7 : 

Now, under the assumption that 7 also satisfies an equation of the form (3.11) where 
A(C) and B(6) are as yet undetermined functions of 5, we know that solutions of 

(3.11) satisfy T,, = ( - a2/h0) (AT +BT,L (3.15) 

and on differentiating with respect to [ we get 

'V,,< = ( - V O )  (A,71+ ( A  + Bt) 76) + o(64v), (3.16) 

where 7 is a typical value of ~ ( [ , t ) ,  since the term -62Bq5,/ho is of order Pij from 
(3.15). Thus we may replace all derivatives of in (3.14) by linear combinations of 7 
and T [ .  In general 

(3.17) 

This simplification has been obtained without making any assumptions about the 
length scales of variations in 7, A and B except that they are O( 1)  or larger. Subst,i- 
tution of (3.17) into (3.14) yields the equation 
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Thus if solutions of (3.15) are also to satisfy the bottom boundary condition to 0{62}  
we must have for consistency 

and 

(3.19) 

(3.20) 

Note that in (3.19) from the definition of H 

from the structure of the conformal mapping. This expression will be singular at  a 
stagnation point in the steady flow solution, however as will be shown, A ( [ )  is still 
an analytic function. Equation (3.19) may be solved by a combination of Green’s 
function and complex variable methods (appendix B) to give 

B(5) may then be obtained from (3.20) in the form 

(3.22) 

(3.23) 

in close analogy with the expressions (3.4) and (3.5) for a(<) and b ( t ) .  

singularities in z&, - 1)  if the transformation 
The numerical evaluation of (3.22) and (3.33) is considerably eased when there are 

(3.24) II: = x(5, - 1)  

is made to the physical co-ordinate x. Thus (3.22) takes the form 

as 
- 2 cosh2&n([(x, - h(z) )  - c*)  A(C*) = Im 7T (3.25) 

and the singularities caused by the presence of a stagnation point in the steady flow 
field are evanescent. 

In  figures 4 and 5 may be found graphs of A and C ,  where C(6)  is given by 

B(5) = - nc&,, C( -a) = h( - a), (3.26) 

and their approximations from (2.50) and (2.51): H - &Hcc and H respectively. The 
topography considered in figure 4 is a step cha,nge in depth from 1 to R (h, E l ) ,  for 
which the conformal mapping takes t h e  form 

z(w) = tanh-lx - R tanh-’x, 
where R2 + ento 4 

X = ( w ) ’  (3.27) 

while that in figure 5 is a plane barrier of least depth R, for which 

z(w) = (2/7r) sinh-’ (sin QnR sinh 47~~). (3.28) 

For both cases we have taken R = Q. 
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E 
FIGURE 4. The functions A ,  C, H - +Htt, H and h(z([ ,  0)) for a step change in depth. 

- , A ;  ---, C ;  --, H-+H t t ; ;  - - - - - - ,  H ;  -, h(x(5,  0) ) .  

4 2 .oo 

F 
-5.00 -4.00 -3.00 -2.00 - 1.00 0 1.00 2.00 3.00 4.00 5.00 

5 
FIGURE 5. The fuilctions A ,  C, H - +Ht5, H and h(x([, 0 ) )  for a 

half-depth spike. Curves as in figure 4. 

Discussion of the long-period equation 
In $ 2  we reformulated the long-wave equations in conformal co-ordinates and 
advanced arguments for the superiority of these equations over the conventional 
equations. The long-period equation, which is an  added bonus of the conformal 
formulation, may now serve as a check on the accuracy ofthe reformulated equations. 
Thus the coefficients A and 0 can be compared with the coefficients H - &Hss and H 
respectively of (2.49) and in figures 4 and 5 we see that they are in reasonable agree- 
ment considering the extreme natures of the topographies considered. Conversely, 
the long-period equation cannot easily be extended to include effects of finite frequency 
(or amplitude); therefore in eases where we do not possess an  exact solution for 
nrbit'rarp frequencies and we wish to  obtain some idea of the range of values of 6 for 
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which the long-period equation is accurate, it is useful to  manufacture a correction 
for higher orders in S by analogy with the reformulated equations. Figures 4 and 5 
give us confidence that the reformulated equations will yield a correction at  least of 
the correct order of magnitude. 

Thus from (3.12), (3.13) and (2.16) we have 

466- Qrgg + (S2/ho) ( H y  - W 4 ) g )  = 0P4, a-4> (3.29) 

and usnig the first-order balance 

4" + (a2/&) HT = O{S2, a-2} (3.30) 

to remove the term in yEgE1 we obtain 

V"+ (VhO) ( H 4 -  Q ( H 4 ) g )  = w4, a-". (3.31) 

By analogy with (3.31) and using (2.50) and (2.51) we may now write down the 
equation 

4" + (a2/h0) [ ( A  + &) 4 - Q(C4)551 = 0{d4, s2a-2>. (3.32) 

We term this equation the 'long-period equation with dispersion corrections'. It can 
be seen that !qSs = O(S2r)  and therefore the long-period equation can be recovered from 
this equation merely by ignoring the term - Q(S2/ho) Cy,, which is O(S4y). We also 
remark that (3.32) and (3.31) in their time-dependent form possess rather better 
analyt,ic properties than do (3.15) and (2.49). For example (3.31) may be written as 
a variational principle 

(3.33) 

with associated equations 

84 + H F t  + gHV + gH2ytt = 0, (3.34) 

(3.35) 

where F is approximately the average of t'he velocity potential over the depth 
(Hamilton 1974). However we cannot write down a variational principle for the time- 
dependent form of (2.49) since this equation is of odd order (Atherton & Hornsey 
1975), and hence it is not possible to find a representation of the wave energy, which 
is identically conserved by this equation. However, from (3.33) we may obtain the 
equation (Eckart 1960) 

S F  + Tc + 9& = 0, 

;{&gHy2 + $9: + +H2$) - 2{Ft9[) = 0. (3.36) 

Note that the energy density is positive definite, with important consequences for 
the stability of the solutions. For a fuller discussion of the merits of the various 
alternative forms of the higher-order terms in the long-wave equations (for constant 
depth only however) the reader is referred to  the recent paper of Bona & Smith (1976). 

I n  figures 6 and 7 we show values of the reflexion coefficients Ro of a wave train 
incident on the topographies of figures 4 and 5 calculated from the long-period equa- 
tion (3.15) and the long-period equation with dispersion corrections (3.32). Values 
calculated using the reformulated equations (2.49) and (3.31) were indistinguishable 

a t  
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FIGURE 6. Reflexion coefficient and transmission phaee angle for a step change in depth. 

_I_ , long-period equation ; -, long-period equation with dispersion corrections. 

within the accuracy of the plot from those calculated using (3.15) and (3.32) respec- 
tively. However, the reflexion coefficients are functions of the global properties of the 
equations and therefore this result should not obscure the essential differences between 
the exact and reformulated equations. 

Also shown are the approximate theoretical results of Mei & Black (1969) for a 
submerged thin plate. These are known to be reasonably accurate (cf. Miles 1967) 
and are equally valid for all frequencies. The phase changes predicted here are in- 
distinguishable from each other and from the results of Mei & Black within the 
accuracy of reading their graph. However, note that the phase speeds to which the 
phase changes are related are different for the different equations. 

It can be seen that the reflexion coefficients predicted are in close agreement with 
each other and with the results of Mei & Black for frequencies up to 6 = 0-3 (a2 z 0.1). 
This corresponds to a wavelength-to-depth ratio of about 20 and we suggest t'hat on 
this evidence the long-period equation (3.15) will be adequate for most purposes up 
to this value. 

As a further check we have calculated the reflexion coefficient for a wave incident 
on Roseau's (1952) topography, which is given by 

z(w) = Rw + (1 - R) 01%-l In [exp (nw/aR) + 11 (3.37) 

(see figure 8). In  this case comparison with Roseau's exact result would seem to 
suggest that there might be little quantitative advantage in using (3.32) in preference 
to (3.15). 
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FIGURE 7. Reflexion coefficient and transmission phase angle for a submerged thin plate. 
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FIGURE 8. Reflexion coefficient for Roseau's topography. ---, Roseau (exact) ; -.-, 
long-period equation ; -, long-period equation with dispersion corrections. 
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4. Conclusions 
In this paper we have developed equations of long-wave type based on an initial 

conformal mapping of the fluid domain (assumed two-dimensional) onto a strip which 
are aimed at  improving the treatment of the effects of bottom topography without 
recourse to the more difficult short-wave theory. The basic equations (the ‘reformu- 
lated long-wave equations ’) possess the advantages that the zeroth-order approxi- 
mation to the fluid flow is much improved and that the Taylor series expansion on 
which the equations are based has improved convergence properties. In addition, 
in the limit of waves of infinitesimal amplitude and long period an exact equation 
has been derived and comparison of the coefficients indicates that the reformulated 
equations can be remarkably accurate for even the most abrupt bottom topographies. 

I should like to acknowledge the support of N.E.R.C. with a research studentship 
whilst this work was being carried out and the help and advice of Dr P. A. Taylor of 
Southampton University and also of Dr D. H. Peregrine of Bristol University. 

Appendix A. Nonlinear forms of the reformulated equation 
Luke (1967) has shown that the governing equations for surface gravity waves 

may be obtained in the form of a variational principle. Thus in two dimensions the 

integral ?(X, t )  
I = 111 ( ~ t + S Y + 3 4 ~ + 3 ~ ~ ) d Y d x d t  (A 1)  

- h(x ,  t )  

is stationary for small variations in 4 and 7. Note that the integrand is the pressure 
in the fluid. The principle is not affected by a change in co-ordinates, thus we may 
rewrite I in (t, 5 )  co-ordinates as 

where 5 = p ( ( ,  t )  is the location of the free surface and 

J(5’C) = X[Y(--XCY[ = Y;+Yt (A 3) 

is the Jacobian of the transformation (see Hamilton (1974) for h = h(z ,  t )  and hence 
J = J ( t , < ,  t ) ) .  The condition that I be stationary for variations Sp in p(<,  t )  and 84 
in $ gives the equations 

These equations are exact within the limits of inviscid irrotational theory, however 
it can be seen that for small amplitude waves (A 4) becomes 

and (A5)  
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where H(6)  = x&, 0) E y&, 0) as defined above and the wave amplitude 

7 rz Y & m J  = HP. (A 10) 

Thus (As)  and (A9) are in agreement with (2.5) and (2.14) above. 
Given (A 4)-(A 7)  it is a straightforward matter to derive long-wave equations to 

any order by replacing (9 by its Taylor expansion (2.21) [the solution of (A6) and 
(A7)] and substituting into (A4) and (A5) to  obtain two equations for p(6 , t )  and 

Note that approximations have to be made for the functions J ( 6 , p )  and Y ( 6 , p ) .  
These may be obtained through (A3) and the Taylor expansion for Y about 5 = 0: 

f ( f , t )  = $(C, - 1 , t ) .  

this being the appropriate solution of Laplace’s equation under the conditions 

y = 0, ys = H ( [ )  on 6 = 0. (A 1% (A 13) 

An extensive discussion of the types of equations which may be obtained is out of 
place here, however we quote the analogy with the Boussinesq (1871) equations con- 
taining first-order finite amplitude and dispersion effects (Hamilton 1974) : 

H 2 s t  + gH3p + &H4p,, + &Ff = O{a2, ad}, (A 14) 

where 

is the ‘mean ’ value of the velocity potential over the depth and a is a typical amplitude- 
to-depth ratio of the wave. The variational formulation (A 2) makes the methods of 
Whitham (1967) appropriate and in fact (A 14) and (A 15) may be derived from the 
following variational principle by analogy with Whitham’s equation for constant 
depth: 

(A 16) 

This particular form of the long-wave equations has the advantage that the energy 
density conserved by the equations [ths conservation equation of the principle (A IS)] 
is positive definite, namely 

SJJ H 2 p 9 ,  + +gH3p2 - $H4& + + ( I  + p )  F:d[dt  = 0. 

(A 17)  
a a - I 1  at ti^ H3 p 2 + ; ( I  + p ) ~ ; +  4 ~ 4 p ; } - ~ ( i  + p p t s t  = 0. 

It is interesting that on eliminating S from linearized versions of (A 14) and (A 15) 
we obtain the equation 

which is identical in form to the time-dependent version of the long-period equation 
with dispersion corrections (3.32): 

?la + ( ~ 2 / h o )  [ ( A  + ac,, 7 - W7)551 = 04, S2a4) (A 19) 
I 1  I L M  83 
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(with 7 = H p ) .  Thus the nonlinear equations derivable from the variational principle 

811 ( A  + &Cc,c) H p S t  + &g(A + &Cg) H2p2 - Q(A + $Cc,) CH2p$ + &( 1 + p )  FzdCdt  = O 

(A 20) 

possess the same formal justification as (A 14) and (A 15) since from (2.50) and (2.51) 

and 
A + *cC5 = H + o(d-4) 

C = H + O(a-2}. 

However, in the limit of small amplitude waves of long period t’hey will in fact be 
exact rather than approximat’e as is the case for (A 14) and (A 15). The question of 
whether this increased accuracy in a particular limit is reflected in an overall increase 
in accuracy of the equations associated with (A 20) as compared with those associated 
with (A 16), however, cannot be answered on the information a t  present ava,ilable. 

Appendix 33. Solution of (3.19) and (3.20) for A ( [ )  and B ( f )  
We consider first equation (3.19) for A (5) : 

= Y(E),  say, (B 1) 

where y(5) is a function containing a t  the worst isolated singularities. VC’e may invert 
this infinite-order differential equation by analogy with the properties of certain 
solutions of Laplace’s equation. Thus we consider a function f ( 6 ,  c )  which satisfies 

8,+fsS = o in -1 < c <  1 

with boundary conditions 
P([’ _+ 1)  = kY(5). 

Now since f is regular in - 1 < 5 < 1 and symmetrical about 5 = 0 we may expand 
P in a Taylor expansion - 

(B 4) 
I’= <y*--yy* c3 +--* c5 . 3! 55 5 !  5555 * . .  

which is convergent in - 1 < 6 < 1 and where 

Y * ( 8  = P,(C’O) (B 5 )  

A ( [ )  = q([, 0). 

is an analytic function of 6. Thus from (B 3) we may identify 

(B 6) 

The fact that  we do not have absolute convergence of the Taylor series on 5 = 2 1 
if y(5)  possesses singularities is not important since the Taylor series is subsidiary to  
the identification (B 6).  

We may now obtain an inversion of ( B l )  by using Green’s theorem to obtain 
Fs([, 0) from (B 2 )  and (B 3). Thus we define the complex Green’s funct,ion 
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where U I  = [+ic ,  w, = &,+iC,, the overbar denotes the complex conjugate and G 
satisfies 

G: + log (UI - UJ,) near w = ui0, 

R e G E O  on < = * I  (B 9)  

ReG,ReG[-+O as [+ kcc, in - 1  < < <  1.  (B 10) 
and 

Thus using Green’s theorem we have 

where C is the circuit around the strip - 1 < 5 < 1 and fi is the unit outward normal. 
Thus 

27J m o ,  l o )  = Re r(5) (GC, 5=+1+ G ,  5=-1) (B 12) 

and hence from (B 6) 

After some simplification we obtain 

Notice that 

thus A(&,) is a smoothed local ‘average’ of ?(to). Also, as noted above, if we change 
to the x co-ordinate we may write 

and A ( [ )  is not sensitive to the presence of singularities in x&&, - 1 )  = y( f ; )  (i.e. 
corners in the depth profile y = - h ( x ) ) .  

We may follow essentially the same procedure to  find B([ ) ,  however with more 
labour. Thus equation (3.20) for B takes the form 

2 4 
3!  6 !  

(B 1 6 )  Y(B+II , )  = - A , - - A , g  ... , 

where 9 is the differential operator which we have already inverted: 

Now we may write the right-hand side of (B 16) in the form 

1 -  1 -  1 -  1 -  3 s,, - 3 x,,,, . . . - - s,, + - x,,,, . . . 
3!  5 !  

where x(&, 5) is the real function associated with F(f;, 5) such that 

X + i f  = Z([+i<) (B 19) 
11-2 
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and may be thought of as being defined by the Cauchy-Riemann relations 

5, = F5, 5, = - F,. (B SO), (B 21) 

Thus $([, 5) has the Taylor expansion 

(B 22) 
5(& 6) = X ( 6 , O )  - c2 3 9*&t, 0) . . . . 

-Y(B+H,) = lim QJ [ X ( ~ , C ~ ) - - X ( ~ ,  -5*)1ci5~. 

Note that 3 is only defined to within an additive constant. Now (B 16) can be re- 
written in the form 

5' 
(B23) 

,'++I -,* 
We need to consider the limit c* --f 1 in this manner to  avoid difficulties in the appli- 
cation of (B 1 1 )  when w = zoo is on the boundary. 

Now from (B 12) and (B 21) 

2n-q0(to, 5 0 ,  = Re'-Jrn Y ( 8  [G5,015=&l~tj I (B 24) 

where 6 = 5 1 is t.aken to mean that we add together the values of the quantity at  
5 = + 1 and 5 = - 1 .  Thus, using this notation 

1 - - n  

m 

2.rr{&tO, 50,  - m - 0 ,  - <*I = R e 1  - Y ( 0  (1'" GcEod50) d t .  (B 25) 
-92 - 5 *  {=&l 

NOW 
in exp (Qnw) in exp (inw) ', = T exp (4nw) - exp ( ~ n . w ~ )  -T exp ( ~ n w )  + exp 

so that 
exp [Qn(w - EO)] 

[exp (+;.w) + exp ( Q~TU,~)]~ 
+ GCto = i (i)z [ exp [tn(w - w0)l 

[exp (&no) - exp (&w~)]~ 
and 

(B 26) 

exp (Qnw) exp (Qnw) 1" G d -"[  + 
- 5 *  550 ' 0  - 5 exp (inw) - exp (*Two) exp (inw) + exp (+ng0) 

Note that on 6 = 5 1 the second term is the complex conjugate of the first, so that 
we may drop 'Re' from (B25). Thus 
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say, where K(( ,  $*, <*) can be written as the contour integral 

309 

(w' +a) *c* 
.4 sinh2[&r((*-(-w')] 1 -exp[$n(w'-i[*)] 

-exp [n(w' + i6*)1 
1 - exp [n(w' - i{*)] +-log as* 

1 + exp [n(w'+ i5*)] 477 
+ 

where we have defined 
w' = Eo-w 

such that the circuit C is around the domain - 1 6 Im w' 6 1, Imw' taking the 
values rt 1 on C. Thus 

sinh2 [in([* - f [  - w')] = - cosh2 [&r((* - to)] on w' = to - ( k i (B 32) 
and 

where a is a real constant (for convenience not taken equal to  6 - (*). 
Now the singularities of (B 30) within - 1 6 Im w' 6 1 consist of a second-order 

pole a t  w' = (*-g, a first-order pole at  w' = ic*, and logarithmic singularities at 
w' = kit*. The complications introduced by the logarithmic singularities can be 
avoided if in these cases we take lim <* -+ 1 before the integration around the circuit. 
The log term then becomes 

Thus only t,he first- and second-order poles contribute to  K(( ,  <*, c*) in the limit 
c* 3 I .  Hence, neglecting the logarithmic contribution, 

K ( ( ,  t*, [*) = Im 2ni {: - __- ([*(.,$a) 

-- n (a  4- i<*) ['"I) 
4 sinh2 [+n(t* - ( - i5*)] 4 i n  

and taking the limit c* -f 1 gives 

from which 

or on making the transformation x = z(g, - l ) ,  

(B 38) 
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in agreement with (3.23). Note that perturbations in the bottom topography which 
have a small effect on the value of the potential function E(x,y) on the bottom, or 
alternatively small shifts in the location of the bottom of a line of constant [ compared 
with the depth will also have a small effect on the values of A ( [ )  and B ( t ) .  The long- 
period equation is thus in some sense stable with respect to perturbations of this kind. 
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